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Abstract

Learning agents that interact with complex environments often cannot predict

the exact outcome of their actions due to noisy sensors or incomplete knowledge of

the world. Learning the internal representation of such partially observable environ-

ments has proven to be a difficult problem. In order to simplify this task, the agent

can choose to give up building an exact model which is able to predict all possible

future behaviours, and replace it with a more modest goal of predicting only specific

quantities of interest.

In this thesis we are primarily concerned with ways of representing the agent’s

state that allows it to predict the conditional probability of a restricted set of future

events, given the agent’s past experience. Because of memory limitations, the agent’s

experience must be summarized in such a way as to make these restricted predic-

tions possible. We introduce the novel idea of history representations, which allow

us to condition the predictions on “interesting” behaviour, and present a simple al-

gorithmic implementation of this framework. The learned model abstracts away the

unnecessary details of the agent’s experience and focuses only on making certain pre-

dictions of interest. We illustrate our approach empirically in small computational

examples, demonstrating the data efficiency of the algorithm.
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Abrégé

L’apprentissage d’agents artificiels confrontés à un environnement complexe est

souvent difficile dû à leur incapacité à prédire le résultat de leurs actions et à une

description incomplète du système. L’apprentissage d’une représentation interne d’un

environnement partiellement observable est particulièrement malaisé. Afin de sim-

plifier cette tâche, l’agent peut, plutôt que de constuire un modèle exact capable de

prédire tout comportement futur, chercher à ne prédire que quelque phénomènes en

particulier. Dans cet ouvrage, nous nous intéressons à la question de représenter l’état

du système de manière à predire la probabilité conditionnelle d’un ensemble restreint

d’événements, étant donné l’expérience précédente de l’agent. Dû à une limite quant

à la capacité mémoire de l’agent, cette expérience doit être résumée quant à rendre at-

teignable cet ensemble restreint de prédictions. Nous proposons ici l’idée d’employer

des représentations basées sur un historique afin de produire des prédictions condi-

tionnelles à des comportements “intéressants”. Nous développons cette idée par le

bias d’un algorithme. Nous illustrons notre approche de manière empirique à travers

de simples exemples computationnels, démontrant ainsi l’efficacité de l’algorithme

quant à la quantitée de données requises.
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Chapter 1

Introduction

Reasoning about the consequences of actions in a stochastic domain is a desirable

feature of intelligent agents. These environments are usually partially observable,

meaning that the agent never observes its actual situation in the world, or state, and

must infer it through observations received from the environment. Sensors are often

noisy or faulty, and thus agents have an incomplete knowledge of the world. In order

to be able to interact with their environment, they rely on an internal representation

that allows them to predict the outcome of their actions. However, learning the

internal representation of such partially observable environments has proven to be a

difficult problem.

Consider a robot that navigates around a room trying to predict what it will see

next, without having any knowledge of the map of the room. The agent interacts with

the environment by taking an action and receiving an observation, without knowing

its actual state. In order to be able to make any reliable prediction about the

future, it must be able to estimate this state based on its experience with the world.
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In complex environments, where the number of actions and possible observations

is high, the space of model parameters can be very large and the agent may be

computationally incapable of updating them.

Traditionally, the framework of choice for modelling this system has been provided

by Partially Observable Markov Decision Processes (POMDPs) (Kaelbling et al.,

1995). These models assume that the dynamics of the environment can be explained

through a number of hidden, or latent states. It is well understood how to plan good

courses of action in a POMDP, if the model of the environment is given. If the model

is not known, the traditional solution is to use Expectation Maximization (EM) to

acquire it from data. This approach has been demonstrated in several practical

applications (Shatkay and Kaelbling, 1997), such as robot navigation. However, the

empirical evidence to date suggests that this approach only works if one already

starts with a good initial model. If the initial model is imprecise, EM typically ends

up in a bad, but locally optimal, solution.

In order to simplify the problem, the agent can choose to only be interested in

a set of observations at a time. For example, if the robot’s battery is low, it could

be interested exclusively in finding the power charger. The model that only makes

predictions about this observation is much simpler than the full model of the world,

and thus the agent needs less data to learn it.

In this thesis we are primarily concerned with ways of representing the agent’s

state that allows it to predict the conditional probability of future events, given the

agent’s past experience.

2



1.1. Predictive State Representations

1.1 Predictive State Representations

The state of a POMDP is artificial and requires a prior understanding of the world.

From the agent’s perspective, the knowledge of its actual x-y coordinate in the world

is less important than the ability to know what will happen next. Recent work on

predictive state representations (PSRs) (Littman et al., 2002) is aimed at addressing

this problem. Their proposed representation is based entirely on predicting the

conditional probability of sequences of future observations, conditioned on future

sequences of actions and on the past history. Because there are no hidden states in

the model, in principle, such a representation should be easier to learn from data.

Linear PSRs, which have been explored most, are an exact model of the system in

the sense that they can predict the probability of any future, given any past history.

Similar exact models, have been provided in other work, for different types of partial

observability (Rivest and Schapire (1994), Hundt et al. (2006)).

1.2 Contributions

The common thread in all this work is the idea that one has to give up building

an exact model, which is able to predict all possible future behaviours, and replace

it with a more modest goal of predicting only specific quantities of interest. The

approaches differ greatly in terms of the computational mechanisms involved.

In this thesis, we attempt to provide a unified way of thinking about this problem.

First, we insist that the only goal of the learned representation is to maintain par-

ticular types of predictions (e.g., predictions about specific observations, about the

3



1.3. Outline

total rewards that the agent might obtain, etc.). Secondly, because of memory limi-

tations, the agent’s experience must be summarized in such a way as to make these

restricted predictions possible. We present two agent state representations that illus-

trate these ideas: the first requires the agent to be given the “interesting” features

of history that are useful for prediction, and the second in which these features are

learned automatically, using the agent’s recent experience. In both cases we provide

a learning algorithm that successfully learns accurate models from small amounts of

data, even when the data is generated form a non-Markovian or a continuous-state

system.

1.3 Outline

We begin by giving the background on modelling dynamical systems in Chapter 2.

We review two methods for representing these systems that are fundamentally dif-

ferent in their representations of the agent’s internal state.

In Chapter 3 we formalize the concept of the agent’s interest in predicting specific

aspects of the future and discuss how we can construct an approximation of the

system that only predicts these tests. Furthermore, to abstract over unnecessary

details of the agent’s experience, we introduce the notion of history representations,

a mechanism that computes the “usefulness” of a history in making the predictions

of interest.

In Chapter 4 we present our initial approximate agent state representation that

requires the agent to have prior knowledge of how the histories representations are

constructed, given the tests of interest. We provide two sets of experimental results

4



1.3. Outline

that demonstrates the effectiveness of the representation in making the predictions

of interest.

In Chapter 5 we expand on the previous representation, by automatically con-

structing the history representations based on the agent’s short term experience. We

motivate the construction through the notion of temporal coherence, which suggests

that the agent’s short term memory is enough to make good local predictions about

the future. We also present an initial intuition on how these models can be used in

control tasks, to learn an optimal behaviour policy.

Finally, in Chapter 6 we conclude and suggest directions for future work.

5



Chapter 2
Background

Probabilistic models are necessary for decision making in complex, realistic en-

vironments. Agents often cannot predict the exact outcome of their actions due to

noisy sensors or incomplete knowledge of the world. In this chapter we will discuss

learning a model of a dynamical system from data, and formalize what we mean

by state from the agent’s point of view. We review two methods for modelling dy-

namical systems that are fundamentally different in their representations of state.

Partially Observable Markov Decision Processes (POMDPs) are a popular class of

models which assume an underlying set of hidden states. Predictive State Represen-

tations (PSRs) instead define the state as a set of statistics about the future. We

discuss both of these approaches in the context of making predictions about future

events.

2.1 Dynamical Systems

We consider the case of an agent interacting with an environment at discrete time

steps, by performing actions from a discrete set A and receiving observations from

a set O, as illustrated in Figure 2.1.

6



2.1. Dynamical Systems

Figure 2.1: An agent interacting with a dynamical system. At time step t, the agent

takes an action at, to which the environment responds with an observation ot and a

a reward rt

The dynamical systems on which we focus exhibit the following characteristics:

• Stochasticity in both the actions and observations. This means that the agent’s

actions will not always have the expected outcome (a robot with a broken wheel

may attempt to move forward, without actually doing so), and the environment

will not always respond to actions in the same way.

• Partial observability, which means that the agent does not have complete

knowledge of the environment. For example, a robot will rarely observe its

actual coordinates in the world, but could observe walls or obstacles. The

walls do not convey all the possible information about the agent’s situation,

and thus cannot be used alone to make decisions - both a kitchen and a living

room will have walls, but this does not mean that the agent should behave

the same in both. Conversely, in fully observable environments, the agent will

know with certainty in which room it is, and thus can make a decision based

on its current location alone.

7



2.2. Agent State

Within this framework, the agent can be thought of as trying to solve one of

two problems: understanding how the environment works, and learning how to act

within it, once this understanding is formed. We leave the second question for future

work. The main goal of this thesis is the first the problem: that of creating the

internal representation of the environment. This representation must be grounded

in the agent’s experience, with little prior information about the environment, and

should be able to make predictions about future observations.

2.2 Agent State

What does it mean for an agent to learn a representation of a system? It means

that it can give an accurate estimate about what will happen in the future that is

consistent with the behaviour of the system in the past. In order to be able to talk

about talk about the past and the future from the agent’s point of view, we will

define a history as a sequence of actions and observations that have happened in the

past, and a test as a sequence that will happen in the future.

Definition 2.2.1. A history, denoted by hτ , is an action-observation sequence re-

ceived up to time step τ : hτ = a0o0a1o1 . . . aτoτ .

Definition 2.2.2. An action-observation sequence starting at time τ + 1 is called a

test, tτ (Littman et al., 2002).

Given a test tτ = (aτ+1oτ+1 . . . aτ+koτ+k), we denote by ω(tτ ) the sequence of

observations of the test, (oτ+1, . . . oτ+k) and by σ(tτ ) the sequence of actions of the

test, (aτ+1, . . . aτ+k). We will refer to the latter as the skeleton of a test.

8



2.2. Agent State

If the system is non-deterministic, the probability of a test occurring is not certain.

For example, if an action fails to execute, due to noise or malfunction in the agent,

then the observation experienced by the agent will change. Thus, we can say that

an agent understands and can model a system if it can predict whether or not a test

will succeed given a certain history.

Definition 2.2.3. The prediction for test t given history h, p(t|h), is defined as

the conditional probability that ω(t) occurs, if the sequence of actions σ(t) is exe-

cuted (Littman et al., 2002).

p(t|h) = P (ω(t)|h, σ(t)).

In discussing models of dynamical systems, we will refer to the agent’s state as

the knowledge the agent has about the environment at that time, which allows it

to make predictions about the immediate future (i.e., the next state). Because the

environment is partially observable, the agent does not have access to the true state

of the world. This knowledge comes directly from the agent’s experience, i.e., the

histories it has observed up to that time. One way in which we can then describe

the agent’s state is as a summary of history.

An important aspect of the agent’s state is that it must be a sufficient statistic of

the history, in the sense that this state alone is enough to make predictions about the

future, and no other information is needed. The agent must also be able to update

the state over time, as it gathers new experience.

There are two general approaches for learning a model that can make such pre-

dictions from data:

9



2.3. Partially Observable Markov Decision Processes

1. partially observable Markov decision processes assume a hidden structure that

generates the observations and learn the internal transition probabilities and

observation probabilities that match the behaviour of the system

2. predictive state representations assume that there is a set of predictions of

future action-observation sequences that is sufficient to compute the prediction

for all possible action-observation sequences

We now present each of these representations in detail.

2.3 Partially Observable Markov Decision Processes

A partially observable Markov decision process, as illustrated in Figure 2.2, is a

general framework for decision making under uncertainty. Formally, a POMDP is

a tuple M = (S,A,O, T ,Ω, b0), where S is a finite set of hidden (or latent) states

in the environment, A is a finite set of actions the agent can take, O is a set of

observations that the environment emits, and b0 is the initial distribution over the

hidden states.

The probability distribution T : S × A × S → [0, 1] is the transition model; the

probability of transitioning from the hidden state s to s′ after taking action a, and

is given by

T (s, a, s′) = P(sτ+1 = s′|sτ = s, aτ = a).

The probability Ω : S × A×O of receiving an observation from the environment is

given by the probability distribution

Ω(s, a, o) = P(oτ = o|sτ = s, aτ−1 = a).

10



2.3. Partially Observable Markov Decision Processes

Figure 2.2: Graphical view of a partially observable Markov decision process
(POMDP). At each time step τ , the agent executes an action aτ and receives an
observation oτ . The agent maintains a belief state bhτ which is a vector of probabil-
ities of being in each state at that time.

The system is partially observable, and thus the agent must maintain a special

distribution, known as a belief state, that estimates the probability of being in any

state at a given time. We denote the probability of an agent being in state s after

having observed the history h by bh(s). After taking a new action a, and observing

o, the belief can be updated as follows:

bhao(s
′) =

Ω(s′, a, o)
∑

s∈S bh(s)Ω(s, a, s′)∑
s′∈S T (s′, a, o)

∑
s∈S bh(s)T (s, a, s′)

,

with the initial belief being denoted by b0.

It has been shown that the belief state is sufficient for optimal decision mak-

ing (Sondik, 1971). Thus, the agent’s state in this case is the belief state vector

itself. As seen above, this state can be updated as the agent interacts with the en-

vironment. Secondly, this state can be used to make conditional predictions about

11



2.3. Partially Observable Markov Decision Processes

the future. The probability of a test t given a history h is:

P(t = a0o0 . . . anon|h) =
∑
s0∈S

bh(s0)× P(a0o0 . . . anon|s0)

=
∑
s0∈S

bh(s0)×
∑
sn

P(sn, o0 . . . on|s0, a0 . . . on)

=
∑
s0∈S

bh(s0)×
∑
s1

P(s1, o0|s0, a0)
∑
sn

P(sn, o1 . . . on|s1, a1 . . . an)

. . .
∑
s0∈S

bh(s0)
n∏
i=0

∑
si∈S

P(si+1|si, ai)P(oi|si, ai)

=
∑
s0∈S

bh(s0)
n∏
i=0

∑
si∈S

T (si, ai, si+1)Ω(si, ai, oi)

While decision making and planning using POMDPs has been extensively stud-

ied, learning the model itself has not been as thoroughly examined. One approach

that assumes little prior knowledge about the system is an extension of the Baum-

Welch algorithm, originally developed for hidden Markov models (Rabiner, 1990).

Baum-Welch is an Expectation Maximization (Dempster et al., 1977) algorithm that

estimates both the transition and observation probabilities from action-observation

sequences.

We use the following notation when describing the algorithm. Given a history

h = (a0o0, . . . , an, on), we use hτ to represent the first τ action-observation pairs (i.e.,

hτ = (a0o0, . . . , aτ , oτ )), and h̄τ to represent the remaining action-observation pairs

of h, starting after time τ (i.e.,h̄τ = (aτ+1oτ+1, . . . , an, on) ).

Given a history h = (a0o0, . . . , an, on), the Baum-Welch algorithm, visually illus-

trated in Figure 2.3, updates the POMDP parameters as follows:

1. At every step τ in the history h, we first calculate:

12



2.3. Partially Observable Markov Decision Processes

• The probability of being in some state si after taking the actions in τ

actions of h and seeing the first τ observations of h. This is denoted by

αhτ (si) = bhτ (si),∀si ∈ S

• The probability of starting in some other state sj, taking the remaining

n− τ actions of h and seeing the n− τ observations of h. This is denoted

by βh̄τ (sj). For every action a that can be taken in s, this is equal to

βh̄τ (sj) =

∑
s′∈S T (sj, a, s

′)Ω(s′, a, o)βh̄τ+1
(s′)∑

s′∈S T (s′, a, o)
∑

s∈S T (s, a, s′)αhτ (s)
,∀sj ∈ S,

and 0 for all other actions.

2. Calculate the probability that at time τ you have transitioned from state si

to sj, and that you have observed the rest of h, as described above. This can

be seen as bridging the two probabilities described above, and is denoted by

γτ (si, sj):

γτ (si, sj) = ατ (si)T (si, aτ , sj)Ω(sj, aτ , o)βτ+1(sj)

3. Re-estimate the state transition probabilities T (s, a, s′) by counting the number

of times the agent was in a state s, executed action a, and moved to state s,

versus the number of times you were the agent was in the state s and executed

action a (i.e., regardless of where the agent ended up).

4. Re-estimate the observation probabilities Ω(s, a, o) by counting the number of

times the agent saw observation o in state s, after taking action a, versus the

number of times the agent was in state s (i.e., regardless of what the agent

observed)

13



2.4. Predictive State Representations

Figure 2.3: Illustration (Rabiner, 1990) of the Baum-Welch algorithm

A second way of learning POMDPs uses Bayesian reinforcement learning (Dear-

den et al., 1999) to maintain a distribution over the model parameters. This has

the benefit of exploring the space of possible models and picking the one that is

most likely to have generated the agent’s experience. However, it is not always clear

what the initial prior over the parameters should be and in practice, learning the

representation requires a large amount of data.

2.4 Predictive State Representations

One crucial disadvantage of the previous approach is that learning the POMDP pa-

rameters is often sensitive to the accuracy of the initial assumptions (Shatkay and

Kaelbling, 1997). If the initial model is imprecise (for example, if the number of

hidden states has been underestimated), EM typically ends up in a bad, but locally

optimal, solution. This is also true in the case of the Bayesian RL approach, if the
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initial prior is very far from the true distribution. Secondly, the state representa-

tion requires prior information such as the number of hidden states, that are not

necessarily easily specified. For example, in a dialogue manager, it’s hard to say

what are the underlying states generating answer to questions, however, it is much

easier to predict the conditional probability of answer, given a specific question (e.g.,

the probability of the answer being “It’s raining”, if the question is “How is the

weather?” ).

An alternative model of a dynamical system is that of Predictive State Repre-

sentations (PSRs), recently introduced by Littman et al. (2002), that generalizes

previous work by Rivest and Schapire (1994). In this case, the internal state is rep-

resented as a set of statistics about future tests. This is more desirable than the

POMDP formulation, as the representation is constructed from observable data, and

not around the artificial notion of hidden state.

System-dynamics matrix

We begin our overview of PSRs by introducing the system-dynamics matrix (Singh

et al., 2004), which is a conceptual representation of a dynamical system. Let T be

the set of all tests and H the set of all histories observed from the system. Given an

ordering (e.g. lexicographic) over H and T , one can define the matrix D (shown in

Figure 2.4), whose rows correspond to histories, and whose columns correspond to

tests. An entry in the matrix is the prediction of a specific test, given a history.
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Figure 2.4: The system-dynamics matrix D. The rows correspond to histories, and
columns correspond to tests. An entry in the matrix is the prediction of a test given
a history

It is important to note that this matrix is not a model of the system, but fully

specifies the system itself. It contains every possible trajectory that can be observed

in the system and can make any conditional prediction about the future.

Singh et al. (2004) have shown that, even though this matrix is infinite, if histories

and tests are generated from a POMDP model, the matrix has finite rank. Formally,

if the system-dynamics matrix D has rank k, then there exist k linearly independent

columns and rows. The k tests associated with the linearly independent columns are

called the core tests. Analogously, one can define the core histories. The set of core

tests is not necessarily unique; however, for simplicity, we can assume that the set

with the shortest tests is chosen. We can now form a subset of the system-dynamics

matrix, illustrated in Figure 2.5, where the rows are the still the histories in H, but

the columns are the k core tests.

Linear PSR

The state representation of given a PSR is the prediction vector of a history, which

is the vector of predictions for all the core tests. Formally, given a history h and a
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Figure 2.5: The set of core tests Q is a set of linearly independent columns of the
system-dynamics matrix. The matrix formed by them is D(Q), shown in grey

set of core tests Q, the prediction vector is

p(Q|h) = [P (q1|h), P (q2|h), . . . , P (qn|h)].

Because the core tests are the linearly independent columns ofD, then any column

can be written as a linear combination of the columns in D(Q). Formally, for any

test t, and history h, there exists a weight vector mt such that

p(t|h) = p(Q|t)Tmt.

For any history h, the state of the PSR is the set of core tests Q and their

predictions p(Q|h), shown in Figure 2.5. These predictions can be thought of as

answers to questions of the form “If I take this sequence of actions, will I see that

sequence of observations?”. This state is a sufficient statistic for the system, as the

agent can predict any test as a linear combination of some of the predictions in

p(Q|h). Once the agent takes a new action a and receives a new observation o, the

prediction for each of the core tests qi ∈ Q can be updated according to:

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=
p(Q|h)Tmaoqi

p(Q|h)Tmao

.

17



2.4. Predictive State Representations

From this formulation it is clear that we do not need to re-compute the weights

for every possible test in the system: rather, we only need to compute the weights

mao for the one-step tests (∀a ∈ A,∀o ∈ O), andmqiao, the weights of the one-step

extensions of the core tests (∀qi ∈ Q) to be able to make any arbitrary prediction.

These updates can be combined into a single update for Q by defining the matrix

Mao, where the ith column is maoqi (i.e., the weight of the one-step extensions of the

core test qi). The state update is thus recursively defined as:

p(Q|hao) =
p(Q|h)TMao

p(Q|h)mao

It can be shown (Littman et al., 2002) that the prediction for an arbitrary test

t, given a history is

p(t|h) =
p(Q|∅)Tmht

p(Q|∅T )mh

,

where ∅ is the empty history.

Finally, Singh et al. (2004) have shown that PSRs are equivalent to POMDPs, in

the sense that if a dynamical system can be modelled with a POMDP containing k

latent states, then it can also be modelled by a PSR with at most k core tests.

While this approach is theoretically elegant, it is problematic in practice. If

the data is not coming from a Markovian underlying system, for example, or if the

underlying system has continuous states, the rank for the systems dynamic matrix

may be infinite. Even if the environment is Markovian but has many observations and

actions, building a sufficient portion of the system-dynamics matrix, to a sufficient

degree of accuracy, may not be feasible.

Some learning algorithms have been proposed for PSRs, with mixed success

(Singh et al. (2003), Bowling et al. (2006), McCracken and Bowling (2006)). All
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these approaches require a lot of data to build a good representation. The reason is

that at the heart of PSR construction lies the computation of a “system dynamics”

matrix (Singh et al., 2004), which contains conditional probabilities of future action-

observation sequences given past sequences (i.e. histories). Then, one needs to

determine the linearly independent columns of this matrix. However, this operation

is not numerically stable, so it only works well if a lot of data has been accumulated,

and the estimates of the probabilities are very precise. In environments with many

observations and actions, computing all these probabilities is too expensive. Also,

since the entries in the matrix are estimated from data, in practice the values are

noisy. Noisy columns are often linearly independent, thus resulting in an incorrect

set of core test (Jaeger, 1998) This has lead to a wave of recent work on learning

approximate predictive representations.

2.5 Other Predictive Models

We now introduce other models of dynamical systems which represent the agent’s

state as a set of predictions about the future.

2.5.1 Temporal-Difference Networks

Temporal-Difference Networks, introduced by Sutton and Tanner (2005) are similar

to PSRs in the sense that they also make predictions of future tests, given past

experience. Unlike PSRs, however, predictions are compositional, meaning that the

prediction for a test depends on the predictions of smaller tests.
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The model is composed of two networks of nodes: the question network, which

phrases the questions of interests and the answer network which tells you how the

answers are computed. In the question network, nodes represent the questions about

future events, i.e., the tests that the agent is interested in predicting. For example,

a node could contain the question “If the my next action is to move forward, what

is the probability that I will hit a wall?”. The inputs to these nodes are the cur-

rent observation, the previous action, and the previous step predictions. A second

network, namely the answer network determines how the actual predictions as each

node are calculated using temporal difference learning.

One drawback of TD-Nets is that the optimal structure for the question network

needs to be specified manually, and not much work has been done towards discovering

this structure from data. Secondly, in big networks, temporal difference learning can

give a non-convergent solution, or can converge to very bad, locally optimal solutions.

2.5.2 Local Models

Local models, introduced by Talvitie and Singh (2008) are a set of models that make

predictions about a restricted set of futures. These tests of interest are explicitly

specified, with the restriction that every test of interest is a union tests (i.e. a set

of tests ti such that no prefix of ti is a union test). Union tests can be thought of as

questions about whether or not any one of a set of observations will occur.

Furthermore, because not all histories are necessary in making accurate predic-

tions of tests of interest, they also introduce the notion of histories of interest. Using

these two sets, they can build a local model that predicts the tests of interest. A
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collection of such local models can be used to answer both more complex questions

(by predicting the union of several tests of interest), or finer-grained questions (using

intersections of sets of tests of interest).

The main constraint of this approach is that both the histories and tests of interest

must be specified explicitly. In Chapter 3 we generalize this notion by providing a

formalism that allows histories of interest to be learned from the agent’s experience.

2.5.3 Other Approximate Models

Rosencrantz et al. (2004) provide an approximate algorithm for computing approx-

imate predictive representations, based on the idea of maintaining probabilities not

over outcomes of tests, but over linear combinations of these outcomes. Their algo-

rithm is efficient, but does not have the same theoretical guarantees as PSRs.

James and Singh (2005) modify the PSR structure to include both memories of

the past observations, as well as predictions about the future. The resulting models

can be exact, but in practice, they become approximate.

Wolfe et al. (2008) provide approximate PSR models under the assumption that

the observations are multivariate and different parts of the observation vector can

be assumed to be conditionally independent.

Still (2009) proposes the use of information-theoretic criteria to summarize the

system’s history in a finite number of states, in such a way as to maximize the

predictive information retained.
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Chapter 3
Making Predictions That Matter

Building a model that has a perfect understanding about everything in the world

is a very difficult task. Due to computational limitations an agent will rarely be

able to store its entire experience, and thus will not be able to build enough of the

system dynamics matrix to find a correct and accurate linear PSR. For example, in

environments with many observations and actions, the space of observable histories

and tests is very large. Given that the agent must observe each of the possible

history-test pairs enough times to compute an accurate estimate of the corresponding

entries in the system dynamics matrix, it is clear that this endeavour may require a

lot of data; hence, the agent might have to wait for a long time before it can make

reasonably accurate predictions.

In order to scale PSRs to work with large systems and limited memory resources,

one must make an approximation, at the cost of either accuracy or completeness.

The approach taken in this thesis is that of restricting the set of predictions the

agent has to make at any given time. This will allow us to learn a model that is

approximate in the sense that it can make accurate predictions about a subset of the

system, but makes no predictions about anything else.
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3.1. Specifying interest in the future

In the first part of this chapter we introduce a general framework that allows us

to restrict the set of predictions the agent must make, and construct a fragment of

the system-dynamics matrix containing only these predictions of interest.

Since we are no longer trying to learn a full model of the world, there is no reason

to think that all of the agent’s experience is useful in making this limited set of

predictions. However, specifying which histories are “meaningful” to the agent is

not as straightforward. To address this problem, in section 3.3 we introduce the idea

of history representations, a mechanism that allows us to abstract over the irrelevant

aspects of the agent’s experience.

3.1 Specifying interest in the future

The idea of only wanting to answer questions about a subset of the world at a time

is grounded in human behaviour. Humans, who do not suffer from the resource

limitations of an agent, tend to answer complex questions by combining the answers

of smaller, more detailed questions. For example, “What will happen tomorrow?” is

a difficult question to answer, as there are many variables and external factors in the

world that may affect the outcome. However, questions such as “Will I go to work?”,

“Will I buy coffee?”, “Will I take the bus?” are concerned with very specific parts of

the world, and gathering information about them is easy. Furthermore, combining

the answers to these smaller questions gives us a fairly good answer to the abstract

question as well, that was obtained much easier and quicker than we would have

otherwise. If we think of answers to these questions as predictions of tests, then we
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3.1. Specifying interest in the future

are essentially building small predictive models that are only interested in a subset

of future tests at a time.

Much of the recent approximate PSR work has been driven by this idea, with

the agent’s interest being specified, for example, as subsets of the tests of interest,

linear combinations of tests, etc. (Talvitie and Singh, 2008). By limiting the set of

predictions, the agent can afford to explore the environment more, as it needs to

store a smaller subset of its experience to build a model. Each of these models,

accurate with respect to a set of tests of interest, can be combined to answer a more

comprehensive set of questions about the world.

We begin by introducing the notion of probes that forms the basis of our work.

Definition 3.1.1. A test probe, f , is a mapping, f : O∗ → R.

Definition 3.1.2. The probed prediction of a test t given a history h and a probe

f is defined as the expected value of f(t) given h:

pf (t|h) = p(t|h)f(ω(t)),

where as before, ω(t) is the sequence of observations in the test t.

Note that the probe is defined only on the observation sequence, in order to ensure

that the prediction can still be properly conditioned on the sequence of actions for

the test, σ(t) (and thus independent of the agent’s policy).

Definition 3.1.3. The prediction for a sequence of actions aτ+1 . . . aτ+k given

a history h and a probe f is defined as the expected value of f over all tests t having

the action sequence as a skeleton:

pf (aτ+1 . . . aτ+k|h) =
∑

t:σ(t)=aτ+1...aτ+k

pf (t|h)
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This is a very general formulation through which we can specify the tests of

interest to the agent, while allowing previous work to be derived as special cases. In

particular, a full linear PSR will have f equal to 1 for all tests. The test probe as

defined above can be used as a discriminative filter: if the agent wants to ignore all

observations except the last one in a test, f can be defined as 1 for all tests ending

in the desired observation, and 0 for all tests with the same skeleton but not ending

in the desired observation.

This approach generalizes in a straightforward way to union tests as well (Talvitie

and Singh, 2008). If the observations consist of a vector, parts of which are condi-

tionally independent of others (Wolfe et al., 2008), then multiple test probes can

be used, one for each part of the observation vector that can be modelled indepen-

dently. Similarly, if the agent is only interested in predicting a linear combination of

the form
∑

iwip(ti), we can define f(ti) = wi,∀i and f(t) = 0 for all other tests; this

corresponds to transformed PSRs (TPSRs), defined by Rosencrantz et al. (2004).

An important special case is the one in which the observations contain rewards;

in this case, f could be defined as the future sum of discounted rewards, and the

predictions associated with action sequences would be akin to value functions for

sequences of actions.

3.2 Learning Predictions of Interest

Suppose that instead of containing the values p(t|h), the system-dynamics matrix

would contain the probed predictions pf (t|h), where f is a given probe. If two rows
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of this matrix, corresponding to histories h1 and h2, would be equal, then the corre-

sponding histories yield the same predictions for all tests, and they can be collapsed

into one, aggregate class. Similarly, if two tests t1 and t2 had the same predictions

for all histories, they could be collapsed into an equivalence class.

Figure 3.1 illustrates this idea of equivalent histories and tests. Assuming that

the environment is discrete and deterministic, if the agent takes two steps forward,

then it will reach the orange wall, and thus could predict that given the history “↑↑”

(the observations in between the actions are assumed to be “white”), the proba-

bility of seeing orange is 1. However, the agent could first turn around 360◦, and

then take two steps forward, again reaching the orange wall. Thus, given the history

“→↓←←↑→↑↑”, the probability of seeing orange is also 1. Because these histories

make the same predictions, there is no advantage in remembering them both, and

thus can be considered identcal. Similarly, once the agent has reached the orange

wall, moving forward will not advance its position, and it will continue observing

“orange”.

For the same reason, the tests “↑ orange”, and “↑ orange ↑ orange” are also

equivalent, as they always occur with the same probability.

Collapsing histories and tests in this way gives rise to a smaller matrix. However,

if the matrix is learned from actual data, exact equality in the expectation estimates

is unlikely. Hence, we will allow for small errors in these predictions.

We can partition the set of all possible tests T into a set of clusters T ′, such that

for each cluster Ti ∈ T ′,

∀t1, t2 ∈ Ti,∀h ∈ H, |pf (t1|h)− pf (t2|h)| ≤ εf , (3.1)
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Figure 3.1: An example of equivalent histories and tests. Given that the f probe
only considers tests containing orange, both histories shown in red are equivalent, as
they end up in the same place, relative to the orange wall. Also, once the agent has
hit the orange wall, further going forward will not change this, meaning that tests of
the form “↑orange” are equivalent to tests of the form “↑orange(↑ orange)∗”

where εf is a small real value (chosen by the experimenter). Note that the mapping

of tests to such clusters is not unique. Since every pair of tests in a cluster is similar,

any single test within the cluster can be used to uniquely identify a specific cluster.

We associate with each cluster T ′i a representative test t′i ∈ T ′i , which can be

chosen arbitrarily (e.g., the lexicographically shortest member). The set T ′ can

then be considered to contain only the representative tests from each cluster. The

prediction for a cluster Ti and history h is:

pf (Ti|h) =
1

|Ti|
∑
t∈Ti

pf (t|h)

Note that because of the way in which the clusters are constructed, all elements of a

cluster will be within εf of this prediction.
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We define the probed prediction vector of a history to be the vector of probed

predictions for all the tests in the set of interest, T ′:

pf (T
′|h) = [pf (t

′
1|h), pf (t

′
2|h), . . . , pf (t

′
k|h)],

where k is the number of clusters in T ′.

Similarly, we can partition the set of all possible histories H into a set of clusters

H ′, such that for each cluster Hi ∈ H ′

∀h1, h2 ∈ Hi, ∀t ∈ T, |pf (t|h1)− pf (t|h2)| ≤ εg, (3.2)

where εg is a parameter. As before, a representative history h′i ∈ H ′i can be chosen,

with H ′ being the set of all clusters. Again, by definition, all histories in a cluster

will be within εg of this value.

The probed prediction for a history cluster H ′i is the average value of the probed

prediction vectors of the histories in the class:

pf (T
′|H ′i) =

1

|H ′i|
∑
hi∈H′i

pf (T
′|hi).

The vector defined above gives the probed predictions for the representative tests in

T ′. Given a new history that can be mapped to a cluster H ′j, we can get the probed

prediction for a test of interest t′i by looking at the ith column of the vector pf (T
′|H ′j).

The simple averaging is taken here because without any a priori information, all

histories should be considered equally likely. If the agent were to behave in a way

biased by a particular policy, the averaging could be done based on the data received,

so more likely histories would naturally be given more weight. We can collect all the

probed predictions for H ′ in a set denoted pf (T
′|H ′).
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One possibility for obtaining T ′ and H ′ is to construct a fragment of the system

dynamics matrix, then use Equations 3.1 and 3.2 to collapse its rows and columns.

The following theorem gives an error guarantee for this approach.

Theorem 3.2.1. Suppose T ′ respects Equation 3.1 and H ′ respects Equation 3.2.

Then the maximum prediction error will be at most 2(εf + εg).

Proof: Figure 3.2 depicts the main idea of the proof. The large dots represent the

histories, and the small dots are the predictions for specific tests. Within each circle,

i.e. each cluster of tests, all predictions are εf away from the center, and thus the

difference in prediction is at most the diameter of the circle, which is 2εf . Similarly,

histories are only collapsed in the same history cluster Hi if their predictions of the

tests of interest are εg away from the center. So, within each cluster of histories, any

two predictions will have a total error of at most 2(εf + εg) .

h2 h1 h3

εf εf εf

εgεg

Ci

Figure 3.2: The prediction error of the approximate system-dynamics matrix is at

most 2(εf + εg)
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3.3 History Representations

In the rest of the paper, we will assume that f is given, and the goal is to learn the

probed predictions pf from data. Given the definition, the simplest approach is to

use discriminative learning, where the history (or the observation-action sequence)

is treated as an input and the output to be predicted is pf . Existing results (Ng and

Jordan, 2002) suggest that discriminative learning may have advantages compared to

generative models (like those that might be learned by EM) in terms of the quality

of the solution obtained. Intuitively, this should be especially true for temporal

predictions, in which small errors in the model estimates may cause predictions to

drift considerably for long sequences of observations.

With this view, the problem of learning a predictive representation becomes a

traditional supervised learning problem, which can be solved in a straightforward way

if a mapping of histories H into a finite set of features Φ is given. However, finding

such a good encoding automatically may be very hard (this is akin to the feature

construction problem). In the context of learning predictive models, an early attempt

at this task is the work on utile distinction memory (McCallum, 2005), which learns

an action-value function, based on a variable-length history representation. More

recently, Wolfe and Barto (2006) used decision trees to learn similar predictions, but

in a fully observable environment.

To make this problem computationally tractable, we restrict our attention to

mappings in which Φ = R (i.e., each history is mapped to a real number). Further-

more, we would like the value of this function to be updated incrementally as new

action-observation pairs are received.
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Definition 3.3.1. A history probe is a function g : H → R defined recursively as:

g(ao) = θao

g(hao) = ϕg(h) + γθao,

where θao,∀a ∈ A, o ∈ O, γ and ϕ are parameters.

We will sometimes use the notation θi to mean θaoi∀a ∈ A (i.e. when the weight of

an observation does not depend on the action). In this case, we will refer exclusively

to the weight of the observation, rather than the action-observation pair.

The idea is that some of the possible observations received from the environment

are more interesting, or useful in predicting the tests of interest. These observations

(henceforth referred to as predictive features of histories) would have a higher θi value.

Summing up the weights of all the observations in the manner described above yields

a representation of a history that measures in a way its predictive value. Thus, the

history probe can be seen as constructing a special kind of history representation for

any history.

This particular form of history representation is inspired by eligibility traces.

Eligibility traces (Sutton and Barto, 1998) are a basic mechanism of reinforcement

learning for temporal credit assignment. They represent a temporary record of the

occurrence of an event, such as the visiting of a state or the taking of an action.

The trace marks the memory parameters associated with the event as eligible for

undergoing learning changes. When an event (such as an error) occurs, only the

eligible states or actions are assigned credit or blame for the error. Previous work

(Loch and Singh (1998), Bellemare and Precup (2007)) observed that these functions

produce good representations for partially observable systems, because they provide
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implicitly a form of memory to remember past events. Note that in an MDP, g would

be defined for states, and the usual eligibility traces can be represented by setting

θ = 1, ϕ to the product of the discount factor and the eligibility parameter (usually

denoted λ) and γ = 1. However, for a general partially observable environment, we

would like all these parameters to be learned from data.

The intuition behind using eligibility traces as history representations is that of

discovering history features. If the observations of interest are specified (e.g., ob-

servations producing rewards), then the weights θi denote how “important” these

observations are in determining the predictive value of the history. In the environ-

ment in Figure 3.3, we can see that the the orange wall is always preceded by a strip

of green. If the set of tests of interest consists of tests in which the first observation

is orange, (i.e., we are answering the question “Will I see the orange wall in the next

step?”), then the green observation can be considered a predictive feature . The

more recently this observation occurred, the more likely the orange wall will be seen

in the next step. By using a history representation based on eligibility traces, we can

easily assign temporal credit to the occurrence of this observation, and thus histories

in which it has occurred in the last time step will have a higher value than those in

which it occurred k steps in the past.

3.4 Conclusions

In this chapter, we have introduced a general way to specify the tests of interest.

These are a subset of the possible futures, such as tests related to a specific goal, that

the agent wants to predict. We have introduced prediction-based similarity relations
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Figure 3.3: An example of history features. Since green always precedes orange
in this domain, we can consider green to be the predictive feature in building the
history representation

on histories and tests that allow us to collapse the system-dynamics matrix, and

bounded the error in prediction caused by this operation.

Furthermore, because not all histories are relevant to predicting the tests of in-

terest, we have introduced the notion of history features. These can be constructed

from a history using a history probe, which is function that essentially computes the

predictive value of a history (i.e., its usefulness for making predictions), given a set of

predictive features. Using this history representation we can now make predictions

conditional on “interesting” behaviour.

In the next two chapters, we create two different models based on this framework.

The first assumes that the set of observations of interest is given, and learns the

assignment of weights that minimizes the prediction error over all possible history-

test pairs. The second model, presented in Chapter 5, extracts this set of observations

from the agent’s short term memory.
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Chapter 4
Approximate Agent State Representations

We begin by introducing the first of two state representations based on the frame-

work described in Chapter 3. In this chapter we present the Approximate Agent State

Representation (AASR) framework, in which the agent is given the predictive fea-

tures. This formulation requires the agent to have prior knowledge of both these

features, as well as their weight in constructing the history representation. In Chap-

ter 5 we generalize this approach using the idea of temporal coherence, and allow

the agent to learn these parameters from its short-term experience. We provide an

algorithm that learns this representation of a partially observable model from data,

and illustrate it on a set of experiments. The ideas presented apply in non-Markovian

environments, as well as systems with continuous states.

4.1 State Representation

Given a history probe g, we can create clusters of histories, where histories h1 and

h2 are mapped together if their history representations are similar:

|g(h1)− g(h2)| ≤ εg,
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where εg is a small real value. The history probe value of a cluster is:

g(H ′i) =
1

|H ′i|
∑
h∈H′i

g(h).

The idea behind this clustering step is that if under a history probe g, two histo-

ries are assigned the same value, they must be very similar in terms of their predictive

information as well. However, using solely the history representations (i.e., the his-

tory probe values), there is absolutely no guarantee that histories that end up in

the same cluster actually have similar predictions. In Chapter 5 we improve on this

method so that this clustering step takes into consideration the predictions, thus

maintaining the error guarantee from Theorem 3.2.1.

The tuple 〈T ′, H ′, f, g, pf (T ′|H ′)〉 forms an approximate system dynamics matrix,

which we will call the approximate agent state representation (AASR). This repre-

sentation makes predictions only for the tests of interest given by f . The probed

predictions pf (T
′|H ′i) for a history cluster H ′i constitute the state of the model: they

can be used both to make predictions about arbitrary tests of interest, as well as to

maintain and update the state. Note that representing state in this way is reminis-

cent of PSRs, where state is represented by a set of predictions about core tests.

Making Arbitrary Predictions

Whenever a history h is observed, the prediction pf (t|h) for a test can be made as

follows:

1. Compute the history representation g(h), and uniquely determine the cluster

to which it belongs:

i∗ = argmaxi|g(H ′i)− g(h)|
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2. Find the cluster of tests of interest T ′i closest to t.

3. pf (t|h) = pf (T
′
i |H ′i∗)

. Note that if t is not a test of interest, i.e., f(t) = 0 then p(t|h) = 0;

Maintaining State

This representation can be updated as the agent collects experience. As described

in Algorithm 2, the initial estimates of p(t|h) are computed by counting:

p(t|h) =
# of times h as been followed by t

# of times h has been followed by σ(t)

Assuming that we have already mapped h to H ′i∗ and t to t′i respectively, then the

updated prediction is

p̂f (t
′
i|H ′i∗) =

|H ′i|
|H ′i|+ 1

× (# of times h′i has been followed by t) + 1

(# of times h has been followed by σ(t)) + 1

Note that we must also update the denominator for all tests t′j with the same that

have the same skeleton, i.e., for which σ(t′i) = σ(t′j). Finally, if this history has not

been encountered before, we must update the history probe value of the cluster:

ĝ(H ′i∗) =
|H ′i| × g(H ′i∗) + g(h)

|H ′i|+ 1

4.2 Learning Algorithm

Algorithm 2 presents our approach for learning the AASR model from data, assuming

that the f and g probes, along with the thresholds εf , εg are given. First, we cluster

the set of all tests; then, we cluster the histories.
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4.3. Experimental Results

Let θg be the weight of the history feature (i.e. the observation that has the

highest weight in the history representation), and θnon be the weight of all other

observations. For simplicity, we’re only assuming there is one history feature, and

that all other observations weight the same; of course, a vector of weights can be

just as easily used. The history clustering depends on the parameters θg and θnon of

the history probe. In order to choose the optimal parameters, we fix θnon to a small

value, and perform line search over a large range of values for θg to find the value

that minimizes both the prediction error, as well as the number of history clusters.

At every step in the line search, we can use a subset of the data set D′ ⊂ D to

create a temporary AASR, M ′. To evaluate its prediction error, we perform cross

validation by training a second AASR, M , with the same set of parameters, using

the entire data set D. The prediction error for M ′ is the total average difference (for

all tests and histories in D), between the probed predictions of M and M ′.

The εf parameter can be chosen to ensure a good tradeoff between the size of the

representation and the prediction accuracy. The granularity of the history clusters is

controlled using εg; a larger εg will allow histories that do not have the same probed

predictions to be collapsed in the same cluster, which will generally lead to a higher

prediction error.

4.3 Experimental Results

The goal of these experiments is to learn how to model the environment and pre-

dict what will happen in the future, for a set of tests of interest. We consider the

“goodnes” of a model to be the total average prediction error, defined as follows:
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let pMf (t|h) be the prediction given by a model M , and p̂f (t|h) the true prediction

(calculated from the actual Markov Decision Process representing the system), then

the total average prediction error is:

error =
∑
∀h,t∈X

|pMf (t|h)− p̂f (t|h)|,

where X is a testing set consisting of history-test pairs.

We compare our approach with the results of models learnt using Expectation

Maximization. We do not compare our results directly with PSRs, as they are trying

to learn an exact model of the environment, i.e., predict all futures; we would thus

expect that PSRs will need much more data to become stable, and will have very

high errors for the amounts of data that we use.

4.3.1 Tunnel World

The first environment we will consider is a small probabilistic domain, shown in

Figure 4.1. The agent transitions from state i to state i− 1 with probability p, and

to state i + 1 with probability 1 − p. In our experiments, p = 0.7. There are two

deterministic observations: dark (D) and light (L).

s1 s2 s3 s4

0.3 0.3 0.3

0.3

0.70.70.7

0.7

Figure 4.1: Tunnel World
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Task

The tests of interest are given by a binary test probe: for any test t whose observation

sequence contains light, f(ω(t)) = 1; otherwise, f(ω(t)) = 0. The predictive history

feature is defined in the same way because once the agent has reached the end of

the tunnel, it is very likely to stay there. This history representation only takes

into consideration the observation sequence starting at the last time light was seen,

because seeing light once is sufficient to determine exactly the agent’s position in the

tunnel.

Experiment Details

The data consists of action-observation trajectories of length 16, starting in the

rightmost state (s4 in the figure). From these, we extract the initial p(t|h) predictions

through counting, while requiring the histories in the table to be no longer than

10 time steps, and the tests no longer than 6. All results are averaged over 10

independent runs. We use γ = 0.8, φ = 0.2. Two tests are considered equivalent if

their predictions are within εf = 0.04 away from each other. Similarly, εg = 0.001.

The parameter for the light observation, θL, is chosen by a line search, as described

in Algorithm 2.

Results

In Figure 4.2 we present the total average prediction error, i.e., the difference, over

all history and test pairs, between the true predictions and the predictions given by

the learned model. We first observe that all models built with EM converge to a local
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optima, and that this optima depends on the initial distributions of the parameters.

For example, if we use the true number of states in the MDP (i.e., four), but initialize

the transition and observation distributions randomly, the resulting model has a

very high variance and prediction error. However, initializing the same model to

distributions that are very close to the correct ones, these results improve greatly.

We can also see that just overestimating the number of hidden states (to the number

of states discovered by the AASR model) does not perform better. Conversely, the

AASR model finds a good solution very quickly, and continues to improve as more

data is seen, as the probabilities in the approximate system-dynamics matrix become

more accurate.
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Figure 4.2: Tunnel World - Graph comparing the average prediction error of the
AASR model vs. that of 3 different models learnt with Expectation Maximization

We can also look at the greatest prediction error over all history-test pairs, illus-

trated in Figure 4.3. Overall, the AASR model has the highest maximum error, but

this is to be expected - because the history representations do not take predictions
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into considerations, there exist some cases in which two histories are incorrectly ag-

gregated together. However, this occurs rarely, as the total average prediction error

is still very small. We can also see that this error drastically decreases as more data

is seen and the predictions in the system-dynamics matrix become closer to the true

values.
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Figure 4.3: Tunnel World - Graph comparing the maximum prediction error of the
AASR model vs. that of 3 different models learnt with Expectation Maximization

In Figure 4.4 we can see the number of states (i.e. histories that are not equiv-

alent) that the AASR discovers does not increase as more data is seen, which is a

very positive result. From the previous graphs we know that its accuracy increases,

thus proving that the original error was caused by the inaccurate p(t|h) estimations,

and not from incorrect clustering. The states of the final AASR model correspond

to histories which determine the position in the world; for example the histories aD
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and aDaDaL indicate whether the agent needs to take at least 2 steps, and respec-

tively one step in order to see Light, and thus each of these histories are identified

as different clusters by the algorithm. The other clusters have a similar meaning.

We can also see that the θL parameter, the weight of the Light observation also

converges within a small number of trajectories, confirming that the model converges

quickly to a parameter configuration, and then continues to improve its predictions.
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Figure 4.4: Tunnel World - Number of AASR States

Finally, we analyse the effect of εg on the final AASR model in Figure 4.5. As

expected, the number of states in the final representation decreases as εg increases.

This is because for very large values of εg, all histories are considered essentially equal,

and are collapsed in the same cluster. Similarly, the error in prediction increases

with an increase in εg, as histories are aggregated incorrectly. As the number of
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clusters goes down, the error decreases again, but not as a result of the quality of

the representation. When histories are clustered together, the probed prediction

vector is averaged between the members of the cluster. Thus, when there is only one

cluster, its prediction vector is an average of all prediction vectors; given that many

predictions are 0, this average prediction is essentially noise, which can end up being

very close to the average of all correct predictions. However, we can see that the

smallest error is for the smallest εg, in which case only histories that are very close

are collapsed, thus minimizing the number of incorrect cluster assignments.
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Figure 4.5: Tunnel World: Effect of εg on the final representation

4.3.2 Non-Markovian Tunnel World

The approximate agent state representation works well in cases where the data does

not come from a Markov system as well. We have modified the transitions in the

tunnel world to depend on the “direction” of moving. Now, the agent transitions

with probability p in the direction of movement, and 1− p in the opposite. Initially,

the agent is going left, and thus the transitions are the same as in Figure 4.1.
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However, when the agent reaches s0 and loops, the direction changes, as if the agent

“bounced” off the wall. Since the agent starts moving right, the probabilities on the

transitions in Figure 4.1 are reversed. Similarly, the direction changes from right to

left after bouncing in s3. The observations as well as the start state are the same

as before. This domain is non-Markovian because state alone cannot determine the

next state; this transition changes depending on the direction of movement.

In Figure 4.6 we present the total average error over all pairs of histories and tests,

averaged over 10 trials. Again, we compare the error obtained from our algorithm

with that obtained by three models created using Expectation Maximization (EM):

one that fits the data to 8 states (i.e. the size of the corresponding Markovian Hidden

Markov Model model), and two that fit the data to 12 states (bigger than the size of

the learnt AASR). Again, the error from the EM model is significantly higher, and

with greater variance.
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Figure 4.6: Non-Markovian Tunnel World - Total Average Error
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4.3.3 Continuous Tunnel World

We can also apply the AASR algorithm to learn the dynamics of a continuous model.

In this case, the agent starts randomly in the interval [0, 1]. With probability p = 0.7,

it transitions from state x to state x′ = x − δ + εnoise, where δ = 0.2, and εnoise is

drawn from a Gaussian distribution with mean µ = 0 and variance σ2 = 0.5. With

probability 1 − p it transitions to x′ = x − δ + εnoise. States outside of [0, 1] are

truncated to 0 and 1 respectively. States that are ≤ 0.2 see light, and all others see

dark. The total average error, averaged over 10 trials, is presented in Figure 4.7.
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Figure 4.7: Continuous Tunnel World - Total average error

4.3.4 Gridworld

We now consider a larger domain, similar to the one used in Rafols et al. (2005),

pictured in the left panel of Figure 4.9. Each grid cell has 4 different orientations,
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and thus there are 6x6x4 states. There are 2 actions, forward (F) and turn left

(L), which changes the orientation, but keeps the agent in the same grid cell. The

system is stochastic, and each action has a 5% probability of failing (in which case

the system remains in the same state). The system is also partially observable: if

the agent is next to a wall and facing it, it will observe the wall’s colour, otherwise

it will observe white.

Figure 4.8: Grid World

Task

The goal of the task is to make predictions about whether the agent will see the

orange wall again, given its history seen so far, and given a sequence of actions to

be taken. The f probe is 1 for all tests that contain the observation orange, and 0

otherwise. The predictive history feature is also orange.
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Experimental details

We repeatedly sample new trajectories consisting of 40 transitions (histories of length

30, tests of length 10), and then use them to learn the model. The start state of

each trajectory is the top left corner, oriented towards the orange wall. As before,

γ = 0.8, ϕ = 0.2, εf = 0.04, and εg = 0.001, and all results are averaged over 10

runs.

Results

The final model has no more than 50 states, regardless of the number of observed

trajectories, as can be seen in Figure 4.9. As before, the algorithm settles on this

model very quickly, and its complexity does not increase as more data is seen. This

representation is several orders of magnitude smaller than the number of observed

unique histories, illustrating the power of history representations.

Rather than plotting the total average predicting error as before, we instead plot

the average prediction error for selected history-test pairs in Figure 4.10. These

pairs vary in both the length of the predicted tests, as well as the observed history.

As expected, shorter predictions such as p(fO|[]) have a smaller prediction error,

which converges very quickly. This is because the actual estimate in the approximate

system-dynamics matrix is very close to the real value, as the history-test pair occurs

very often. This implies that a model predicting the immediate futures can be learned

from a very small number of samples. However, longer tests are seen with much lower

frequencies, and as a result, their initial p(t|h) predictions are very inaccurate, and

decrease slower.
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Figure 4.9: Grid World - Number of states in the AASR model
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Figure 4.10: Grid World - Prediction error for selected tests

4.4 Conclusions

While the AASR algorithm works well in practice for small examples, it does not

scale up. The main flaw is that in order to build an approximate representation,
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it must first build an estimate of the system-dynamics matrix. Although this is

finite, it is still exponential in the length of histories and tests, and thus becomes

intractable very quickly. Secondly, the history representation used by the algorithm

does not take predictions of tests in consideration. It is easily conceivable that if

the wrong set of observations of interest is given (for example, observations that are

very far away from those used by the f probe), then the model will make incorrect

predictions, that are conditioned on the wrong kind of behaviour (i.e., meaningless

history clusters).

In the next chapter we propose an algorithm that automatically learns these

history representations from data at the same time it builds the approximate system-

dynamics matrix.
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Chapter 5
Local agent state representations

Agents often have very limited resources, in terms of both the space allotted

to store data as well as the time required to process it. As a result, the AASR

approach outlined in Chapter 4 is not advantageous. Although specifying a set of

tests of interest does simplify the problem, we are still required to first compute a

reasonably accurate subset of the system-dynamics matrix, and only then can we

summarize it further. Since the system-dynamics matrix is exponential in the length

of tests and histories, increasing the length of the experience quickly makes this

algorithm intractable.

A more desirable approach would be to create an approximate model directly, by

summarizing the agent’s experience as it occurs, while at the same time constructing

a history probe automatically, such that history representations are close for histories

with similar predictions, and very different for histories with different predictions.

Many environments, such as the Half Moon domain presented in Figure 5.1 are very

localized, and summarizing the entire long term experience is not necessarily useful

for predictions. We will exploit the temporal characteristics of such environments by

creating a model that is based on the agent’s short term experience. As the agent
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continues to learn, the environment may change, and so will the local model of the

world. By considering local models based on short term experience, the agent can

avoid certain biases that have happened in the past, and make predictions based on

the more relevant present experience.

5.1 Temporal Coherence

Temporal coherence (Koop, 2007) is defined as the tendency of domains, and thus

observations, to be consistent over a short term period of time. Imagine a robot that

is going down a hallway with no obstacles. If the hallway is partially observable,

the agent may receive the same observation for many successive time steps. Storing

the entire experience in this case is wasteful, and has no prediction benefits. It is

only when the agent observes something of importance, such as a door, or a corner,

that its experience can actually be used to determine its position in the world, and

thus make predictions. The Half Moon example illustrates this idea. Each of the

observations, black and white, are temporally coherent - if black has been observed

recently, the agent is very likely to be in the black area and thus observe it again.

The g probe defined in Chapter 4 required the agent to know which history

features were important before hand. This is not always a feasible approach, as

for complex environments it might not be immediately clear which observations, or

combinations of observations are important for predictions. Also, if histories are

collapsed based solely on the probe values, there is absolutely no guarantee that

histories that end up in the same cluster actually have similar predictions. We would
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like to construct a history probe that ensures similar history representations make

similar predictions.

Thus, we want to learn a parameter configuration θ = {ϕ, γ, θoi , . . . , θon} that

minimizes the distance (in terms of the value of the history probe) between histories

in the same cluster, while maximizing the distance among all clusters. Formally, we

pick θ with the largest distance between the history representations of clusters:

max
θ

∑
i,j

[g(H ′i)− g(H ′j)]
2, ∀H ′i, H ′j clusters (5.1)

such that the distance between the history representations within clusters is small:

∀hi, hj ∈ H ′i, |g(hi)− g(hj)| ≤ max
Ti∈T ′

|pf (Ti|hi)− pf (Ti|hj)| (5.2)

Because the distance between histories in the same cluster is bound by a predic-

tion error, which is a probability value, we must normalize the values of the history

probes by dividing each g(h) by the theoretical maximal value, computed as follows:

g(a0o0 . . . anon) = ϕg(a0o0 . . . an−1on−1) + γθn

= ϕ[ϕg(a0o0 . . . an−2on−2) + γθn−1] + γθn

. . .

= ϕnθ0 + γ
n−1∑
i=0

ϕiθn−i

where θi = θaioi . In the limit as the length of the history goes to infinity, the first

term goes to zero, and using the geometric series, the second term converges to γ R
1−ϕ ,

where R = maxi θi is the highest weight over all observations.
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5.2 Learning algorithm

To solve this optimization problem, we begin by constructing a small system-dynamics

matrix from the short term experience (i.e. a couple of steps in the past). The size

of this matrix can be chosen by the experimenter as an imposed memory limitation

on the agent, or experimentally by trying increasingly longer trajectories. Because it

only uses short history test pairs, these occur frequently, so the matrix can be easily

and accurately computed. Then, we determine the exact clusters of histories and

tests of interests. This is similar to the clustering procedure described before, with

the exception that histories are now collapsed according to their predictions, and not

the values of the history probe. First, the set T ′ of tests of interest are formed, such

that:

∀h|pf (t1|h)− pf (t2|h)| ≤ εf .

Then, clusters of histories, H ′, are formed, such that:

∀Ti, |pf (Ti|h1)− pf (Ti|h2)| ≤ εg

where εg , εf are small real values. Then, we perform a search in parameter space

to solve the optimization problem above. Note that more efficient solution methods

can be used here; we use line search just for simplicity.

For every parameter configuration, we first check whether or not the condition in

Equation 5.2 is satisfied. If it is, we calculate the distance between clusters according

to Equation 5.1, and if this yields a larger distance, then we update our optimal

parameter configuration to the current one.

This approach is outlined in Algorithm 3.
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5.3 State Representation

The short-term system dynamics matrix, along with the parametrized g function

learned from it are the new predictive model, which we call the local agent state

representation (LASR). Predictions of tests already in the system-dynamics matrix

are made as explained above, i.e. the history h is mapped to the cluster closest

to g(h), and read from the cluster’s probed prediction vector. To make long term

predictions, we assume that predictions are compositional, and that

pf (t1t2|h) = pf (t2|ht1)

The agent is now guaranteed to have errors in prediction - for example, whether

or not ht1 can occur, it will be mapped to an actual cluster, and a valid, possibly

non-zero prediction will be returned. Note that compositionality can be checked

from data, and a new representation could be learned if compositionality is violated;

however, this goes beyond the scope of this thesis and we leave it for future work.

5.4 Experimental Results

Half Moon World

We illustrate the benefit of using local models on the Half Moon world (Koop, 2007),

depicted in Figure 5.1. In this domain, each of the observations, black or white, are

temporally coherent - if black has been observed recently, the agent is very likely to

observe it again. A model that takes advantage of this should perform better. There
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are twenty states, half of which observe black, and the rest white. The agent floats

with equal probability between any two adjacent states.

Figure 5.1: Half Moon world

Task

The agent has a very short term memory available: trajectories of length 5, which

are split in histories up to length 3 and tests up to length 2. There are several things

we are looking for in these experiments. First, we would like to build a model that

has a small overall error, meaning that it can predict well despite the approximation.

Secondly, we are interested in seeing whether or not the localization assumption is

correct, i.e., whether the model does perform better in parts of the system that are

temporally coherent.
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Experimental Details

The start state is the first white state at the top and the f probe assigns a value of

1 to any test containing Dark, and 0 otherwise, thus answering the question “Will

I see Dark in the near future”. All results are averaged over 10 runs, with γ = 0.8,

εf = 0.1 and εg = 0.01;

Results

We begin by comparing the error in prediction of the learnt LASR with a 20 state

model learnt with Expectation Maximization (EM), where the initial parameters

are initialized very close to the correct ones. We use two different scenarios, one in

which the testing data is composed of histories of length 10 and tests of length 1

(thus effectively answering the question “Will I see Dark” in the next step), and a

second in which the testing data has tests of length 4. Because the model was trained

on trajectories of length 5, this means that the predictions it is asked to made will

be about unexplored parts of the domain.

In Figure 5.2 we can see that in both scenarios the LASR model has a smaller

total average prediction error (over all history-test pairs in the training set) when

compared to EM. This difference is very obvious inthe harder prediction scenario

(with tests of length 4), in which the LASR performs almost as well as the EM

model does in the simple prediction case (with tests of length 1).

In Figure 5.3 we present the maximum prediction error of the models.The fact

that the error is higher than the theoretical bound of 2(εg + εf ) comes from the

compositionality assumption. Assuming that there has been enough data for the
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Figure 5.2: Half Moon world - Average Prediction Error

estimates in system-dynamics matrix to be accurate, the bound on prediction error

holds for tests that the algorithm has seen, i.e., up to 2 steps in the future. We can

see that the maximum prediction error of the LASR model converges to the correct

bound in the case where it is asked to predict 1 step in the future. However, when

asked to predict 4 steps into the future, the model must compose predictions together.

This means that in some cases it will assign non-zero probabilities to trajectories that

cannot occur. This is also why the maximum prediction of the LASR model is higher

than that of EM.
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Figure 5.3: Half Moon world - Maximum Prediction Error

In Figure 5.4 we present the change in the two θ parameters over time. It is

interesting to note that the LASR agent prefers assigning a higher weight to the

White observation, even though it is not the observation of interest in the tests.

Task

We now consider a different task, in which we compare the effect of the temporal

coherence of the model on the prediction error. We consider two different trajectories,

starting from two different states: the same start as before, as well as a state to its

left, in the black zone. We expect that in the second case, black will be predicted

accurately, but white will not, as the agent has not experienced the observation in

its recent experience.
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5.4. Experimental Results
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Figure 5.4: Half Moon world - LASR Parameters

Experimental Details

As before, the agent has a very short term memory available: trajectories of length

5, which are split in histories up to length 3 and tests up to length 2. The starting

states for the two experiments are given in Figure 5.5. The f probe assigns a value

of 1 to any test containing Dark, and 0 otherwise, thus answering the question “Will

I see Dark in the near future”. All results are averaged over 10 runs, with γ = 0.8,

εf = 0.1 and εg = 0.01;

In Figure 5.6 we present a sample trajectory that starts in the state marked

s1 in Figure 5.5. The horizontal axis shows the observation at each time step, and

the vertical axis is the prediction of seeing dark in the next time step. Because the

model is not very temporally coherent (seeing white does not necessarily guarantee

you will see white in the next step), it does not perform well when evaluating a long

sequence of the same observation. However, because the agent’s recent experience
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5.4. Experimental Results

Figure 5.5: Half Moon world

has alternating observations, the model performs much better when evaluating al-

ternating observations. This implies that agent predicts consistently to what it has

seen recently. The idea is that as this recent data changes (for example, the agent

moving on to a different part of the world), the type of predictions it will make will

change as well.

This idea is illustrated in Figure 5.7. We can now assume that the agent has

moved to a different part of the world, as trajectories are now starting in the state

marked s2 of Figure 5.5. In this case, black is very temporally coherent, as the agent

observes black for at least 3 steps in a row. We can see that the model predicts black

much better when in the black part of the trajectory than everywhere else. However,

when as soon as it starts exploring the white area, its predictions start incurring

errors, as it has not explored this part of the environment before. In the future, the

model should have a way to update itself based on this fact.
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Figure 5.6: Half Moon world - Trajectory starting in a less temporally coherent part

of the world
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Figure 5.7: Half Moon world - Trajectory starting in a temporally coherent part of

the world

5.5 Conclusions

The temporal coherence of the agent’s experience tends to affect the short term pre-

dictions it needs to make. In this chapter we illustrated this concept by showing that
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5.5. Conclusions

a small model, built from an agent’s short term experience can be used make accu-

rate predictions. This model has the advantage that it automatically discovers the

observations of interest that make a history useful for predicting the set of interest,

by extracting at the “interesting” behaviour from its recent experience. Because this

algorithm does not try to construct a large system dynamics matrix, it can easily

scale up to large examples, with more observations and actions than the previous

AASR approach could.

The LASR model still has all the benefits of models with predictive state. Fur-

thermore, it can be easily used for planning in control tasks. If the test probe f

is chosen to either select tests containing the goal observation, or as a sum of fu-

ture discounted rewards, then the predictions for each of the test of interests can

be used as feature representation. These features can be used as input to standard

Reinforcement Learning algorithms (Kaelbling et al., 1996) to learn a control policy.
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Chapter 6
Conclusions and Future Work

In this thesis we are primarily concerned with ways of representing the agent’s

state that allows it to predict the conditional probability of future events, given se-

quences of the agent’s past experience. The agent’s experience comes from interacting

with a complex, partially observable environment. Due to computational limitations

an agent will rarely be able to store its entire experience, and thus will not be able

to build enough of the system-dynamics matrix to construct a correct and accurate

linear PSR. We investigate methods of reducing the size of the system-dynamics ma-

trix by specifying the agent’s interest in future events. Building a model that makes

predictions about a restricted set of tests is simpler, as it requires less data. These

models, accurate with respect to a set of tests of interest, can be combined to answer

a more comprehensive set of questions about the world.

We formally specify the tests of interest to the agent through the notion of a

test probe. Using this probe, we showed how one can collapse the system-dynamics

matrix to yield a smaller matrix, that makes accurate predictions with respect to the

set of tests of interest. In a similar manner, we defined the idea of history probes,

which allow us to represent the predictive information of a history according to a
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6.1. Future Work

set of features of interest. This function is very similar to eligibility traces, as it

implicitly provides a form of memory to remember past events. These events, or

observations, represent the interesting behaviour in the agent’s experience, that can

be used to make the predictions of interest.

Assuming that this set of history features were given, we can construct the Ap-

proximate Agent State Representation model. This model has predictive state, and

can directly make arbitrary predictions. However, since the the system-dynamics

matrix is exponential in the length of tests and histories, increasing the length of the

experience quickly makes this algorithm intractable. In addition, specifying which

observations in the agent’s experience can be considered useful for predictions is not

always obvious. Instead, we provided an algorithm that automatically constructs

a history probe, such that histories with similar representations make similar pre-

dictions, and different history representations make very different predictions. This

history probe is learned from the agent’s short term experience. The resulting model,

the Local Agent State Representation has the advantage that it automatically dis-

covers the observations of interest that make a history useful for predicting the set

of interest, by extracting at the “interesting” behaviour from its recent experience.

6.1 Future Work

We presented a blueprint for creating approximate representations of partial envi-

ronments from data, and a simple algorithm which makes these ideas concrete. The
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6.1. Future Work

results are very promising, but more experimentation, in larger domains, is neces-

sary. For example, it needs to be further examined how the LASR model will scale

up to domains which are not temporally coherent.

The main area of future work is that of history representations. In more complex

tasks, a mapping of histories into the real numbers may not be sufficient, and instead

one may need to use vectors of observations, or action-observation pairs.

The models that we learn do not have a set of underlying states, and thus do

not try to model the dynamics of the system directly. Because they only maintain

predictions about future observable events, these models can be used better in gener-

alized tasks. One interesting example would be to see whether models can be easily

transferred across similar domains. For example, one could learn a model (in which

the tests of interest are those related to a goal), and use it to make predictions in

domains with slightly different dynamics. These models can also be used for control,

and they don’t depend on the reward signal directly, so it would be interesting to see

their performance in learning different policies. Finally, while our approach allows

for the test probe to take the form of the discounted sum of rewards, experiments

are needed to demonstrate its effectiveness in control tasks.

In terms of solving the the optimization problem that we defined (i.e., that of

finding the weights of each observation in calculating the value of a history probe),

much better methods than line search can be used. For example, the problem could

be formulated using L1 regularization, or as a linear program.
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Chapter 7
Appendix A: Algorithms

Algorithm 1 Estimating an approximate system-dynamics matrix

Input: A set of data D = (h, t),∀h ∈ H,∀t ∈ T , probes: f , εf , εg
Output: history clusters H ′, tests of interest T ′, probed predictions pf (T ′|H ′)

1. Use the data to estimate p(t|h), e.g. by counting:

p(t|h) =
# of times h as been followed by t

# of times h has been followed by the action sequence of t

2. Compute the probed predictions:

pf (t|h) = p(t|h)f(ω(t)),∀h ∈ H, t ∈ T

3. Cluster tests into the set of tests of interest

T ′ = {T ′i |t1, t2 ∈ T ′i ⇒ ∀h ∈ H, |pf (t1|h)− pf (t2|h)| ≤ εf}

4. Compute the probed prediction vectors for all histories h ∈ H

pf (T ′|h) = [pf (t′1|h), pf (t2|h), . . . , pf (t′k|h)],

5. Cluster histories

H ′ = {H ′i|h1, h2 ∈ H ′i ⇒ ∀t ∈ T ′, |pf (t|h1)− pf (t|h2)| ≤ εg}

6. Compute the probed prediction vectors for the history clusters

pf (T ′|H ′i) =
1
|H ′i|

∑
hi∈H′i

pf (T ′|hi).
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Algorithm 2 Learning the Approximate Agent State Representation

Input: A set of data D = (h, t),∀h ∈ H,∀t ∈ T , probes: f, g, εf , εg
Output: history clusters H ′, tests of interest T ′, probed predictions pf (T ′|H ′)

1. Compute the approximate system-dynamics matrix using Algorithm 1
2. Initialize the history probe parameters: minError =∞, θg = 1, θnon = 1, H ′ = H

3. Repeat until minError ≤ εf

(a) Cluster histories using the g probe given by the current parameters:

Hcurrent = {Hcurrent
i |h1, h2 ∈ Hcurrent

i ⇒ |g(h1)− g(h2)| ≤ εg}

(b) Compute the prediction error currentError of this representation using
cross validation

(c) Pick the representation with the smallest prediction error and smallest num-
ber of states:
If (currentError ≤ minError) and (|Hcurrent| ≤ |H ′|), then:

minError = currentError,H ′ = Hcurrent

(d) Advance to the next parameter configuration
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Algorithm 3 Learning the Local Agent State Representation

Input: A set of data D = (h, t),∀h ∈ H,∀t ∈ T , probes: f , εf , εg
Output: g probe, history clusters H ′, tests of interest T ′, probed predictions pf (T ′|H ′)

1. Compute the small (i.e. |h| ≤ 5, |t| ≤ 2) approximate system-dynamics matrix
using Algorithm 1

2. Initialize the history probe parameters: θ∗ = ϕ∗, θ∗i
3. maxClusterDistance = −∞
4. Line search: for all parameter values θk = ϕk, θki

(a) if the distance between histories in a cluster is less than the maximum error

∀hi, hj ∈ H ′i, |g(hi)− g(hj)| ≤ max
Ti∈T ′

|pf (Ti|hi)− pf (Ti|hj)|

(b) Then calculate the distance between clusters for this parameter configura-
tion

currentClusterDistance =
∑
i,j

[g(H ′i)− g(H ′j)]
2,∀H ′i, H ′j clusters

(c) If currentClusterDistance > maxClusterDistance, then:

θ∗ = θk,maxClusterDistance = currentClusterDistance

(d) Advance to the next parameter configuration
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